

3933 US Route 11 Cortland, NY 13045

Telephone: +01 607 753 6711 Facsimile: +01 607 756 9891 www.intertek-etlsemko.com

Order No. G103013014

Issued: 27 APR 2017 Revised: None

Report Number: 103013014CRT-001 Model Number: NV800 ARB Number: NA

RENDERED TO:

Mr. Felipe Soberon Novaerus US, Inc. 4700 Falls of Neuse Road Suite 355 Raleigh, NC 27609 USA Phone: +1 (813) 304-2468 E-mail: felipe@novaerus.com

Report Scope:	Ozone Emissions Testing of Household Electrostatic Air Cleaners.
Limitation Statement:	The test data and results contained in this report are provided for client information and evaluation. No conclusions are drawn by Intertek.
Authorization:	The tests were authorized by signed quote # Qu-00771472, dated 03/15/2017.
Standard Used:	UL Standard for Safety for Electrostatic Air Cleaners, UL 867, Section 40, Ozone Test, Fifth Edition, August 4, 2011 with revisions to and including August 23, 2013.
Report Content:	 Unit Under Test Peak Ozone Test Results Max Ozone Test Results Chamber Equipment Summary/Signatures Appendix Revision Summary

Page 1 of 13

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only the sample tested. This report by itself does not imply that the material, product or service is or has ever been under an Intertek certification program.

1. Unit Under Test Information

MODEL

Manufacturer:	Novaerus US, Inc.	Pre-Filter:	Yes
Model Number:	NV800	HEPA Filter:	No
Production/Prototype/ Design	Production	ESP Filter:	No
Fan Speeds:	2	Carbon Filter:	No
O3/Voltage Settings:		UV Light:	No
O3 Monitor:		lonizer:	Yes
Model Notes:	Unit tested at 230V 50H	Z	

FIRST SAMPLE

Control Number:	CRT1704121652-001	Run-in Start:	4/13/2017 04:30
Serial Number:	NA	Run-in End:	4/18/2017 08:30
Manufacture Date:	March 2017	Run-in Temperature:	77 ± 4 degF
Receive Date:	4/12/17		
Received Status:	OK		
Sample Notes:	Sample runs at 230V 50H	łz.	
•	•		

SECOND SAMPLE

Control Number:	NA	Run-in Start:	NA
Serial Number:	NA	Run-in End:	NA
Manufacture Date:	NA	Run-in Temperature:	77 ± 4 degF
Receive Date:	NA		
Received Status:	NA		
Sample Notes:			
• • • • • • • • • • • • • • • • • • • •			

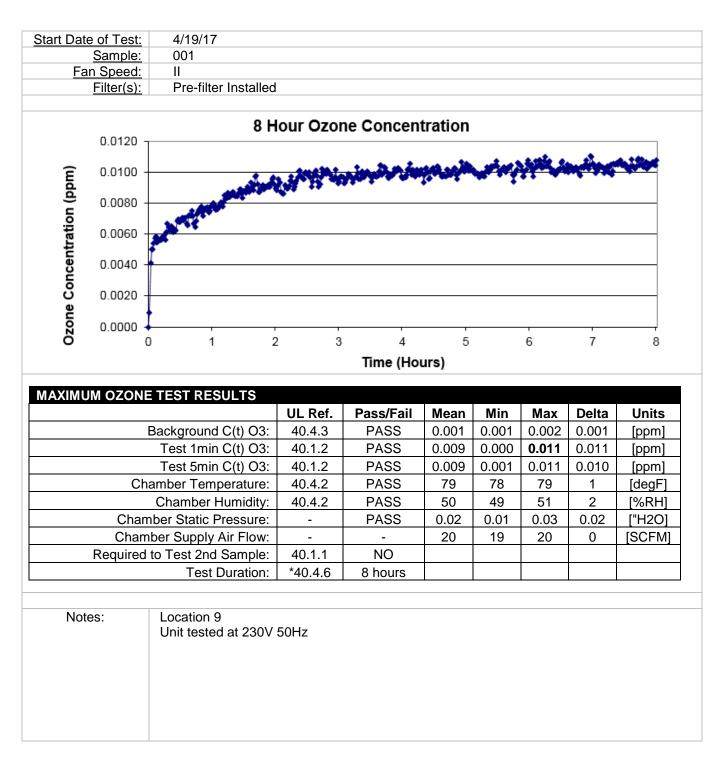
2. Peak Ozone Test Results

GRILL AND AIR PERIPHERY DIMENSIONS

		Date of Test:	4/19/2017
Grill Height:	2.5"	Air Periphery Height:	2.5"
Grill Width:	13"	Air Periphery Width:	19"
Estimated Grill Area:	32.5 Sq. In.	Est. Air Periphery Area:	47.5 Sq. In.
Notes:		ntical dimensions on left and rig ed width of the two grills/periph	
		kwise motion, when viewed fro	

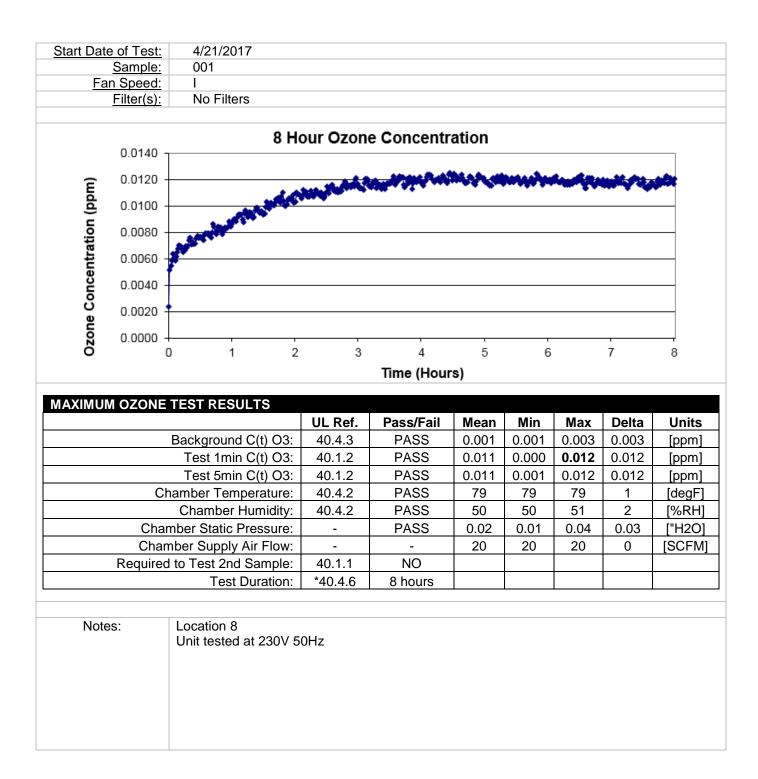
Loc. X Y - [inches] [inches] 1 -2.375 0.625 2 2.375 0.625 3 0 0 4 -2.375 -0.625 5 2.375 -0.625 5 2.375 -0.625 7 2.375 0.625 7 2.375 0.625 8 0 0 9 -2.375 -0.625 8 0 0	PEAK LOCATIONS			
1 -2.375 0.625 2 2.375 0.625 3 0 0 4 -2.375 0.625 5 2.375 -0.625 6 -2.375 0.625 7 2.375 0.625 8 0 0 9 -2.375 0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.62		Loc.		
2 2.375 0.625 3 0 0 4 -2.375 -0.625 5 2.375 0.625 7 2.375 0.625 7 2.375 0.625 8 0 0 9 -2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.6				
3 0 0 4 -2.375 -0.625 5 2.375 0.625 7 2.375 0.625 8 0 0 9 -2.375 -0.625 10 2.375				
4 -2.375 -0.629 5 2.375 -0.629 6 -2.375 0.625 7 2.375 0.625 8 0 0 9 -2.375 -0.629 10 2.375				
1 2 6 -2.375 0.625 7 2.375 0.625 8 0 0 9 -2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 2.375 -0.625 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - <th></th> <td></td> <td></td> <td></td>				
1 1			2.070	0.020
1 1		6	-2.375	0.625
1 3 2 3 5 0 0 4 5 5 0 0 9 -2.375 -0.629 10 2.375 -0.629 0 0 0 0 0 6 7 7 0 0 0 0 0 0 10 2.375 -0.629 0 0 0 0 0 0 10 2.375 -0.629 0				0.625
	1	8		
				-0.625
		10	2.375	-0.625
	4			
9 10 10 10 10 10 10 10 10 10 10 10 10 10	6 7			
9				
	9			
* Location measurements are coordinates in reference to the				
coordinates in reference to the center point.		center po	es in reieren bint.	ce to the

PEAK OZONE CONCENTRATIONS


Location	With F	ilter(s)	Without	Filter(s)				
	Highest	Lowest	Highest	Lowest	Highest	Lowest	Highest	Lowest
1	0.0029	0.0040		0.0028				
2	0.0010	0.0013		0.0014				
3	0.0047	0.0036		0.0040				
4	0.0056	0.0061		0.0035				
5	0.0043	0.0043		0.0025				
6	0.0027	0.0036		0.0028				
7	0.0015	0.0006		0.0009				
8	0.0037	0.0046		0.0066				
9	0.0061	0.0062		0.0061				
10	0.0024	0.0025		0.0019				
11								
12								
13								
14								
15								

Notes: - Ozone Concentrations less background level; in units of PPM.

- Peak concentration for each iteration is in **BOLD**.


3. Max Ozone Test Results

Start Dat	e of Test:	4/20/2017							
	Sample:	001							
<u>Fa</u>	in Speed:	I							
	Filter(s):	Pre-filter Installed							
		0 Ц		ne Concent	tration				
	0.0140 -	о п 			uauon				
Ê	0.0120 -			miner tar		-	int put	in me	And a
(bbr	0.0100 -	Carl State and and and		•				-	
tion	0.0080 -	Aren							
ntra	0.0060 -								
nce	0.0040 -	1							
Ozone Concentration (ppm)	0.0020 -								
ZON	0.0000 -	, ,					,		
0	(D 1 2	3		5		6	7	8
				Time (Hou	urs)				
MAXIMU	JM OZONI	E TEST RESULTS	UL Ref.	Pass/Fail	Mean	Min	Мах	Delta	Units
		Pookaround C(t) O2:	40.4.3	PASS	0.001	0.001	0.002	0.001	
		Background C(t) O3: Test 1min C(t) O3:	40.4.3	PASS	0.001	0.001	0.002	0.001	[ppm]
			40.1.2	PASS	0.011	0.000	0.013	0.013	[ppm]
	Test 5min C(t) O3:								[ppm]
Chamber Temperature:		40.4.2	PASS	79	79	80	1	[degF]	
Chamber Humidity:		40.4.2	PASS	50	50	50	0	[%RH]	
Chamber Static Pressure: Chamber Supply Air Flow:		-	PASS	0.02	0.00	0.03 20	0.03	["H2O]	
				-	20	20	20	0	[SCFM]
	Required	to Test 2nd Sample:	40.1.1	NO					
		Test Duration:	*40.4.6	8 hours					
Not	es:	Location 9							
		Unit tested at 230V 5	50Hz						

4. Chamber Equipment Information

Test Equipment List

Instrument	Model	Intertek Ctrl #	Cal Due Date
Teledyne – Advanced Pollution Instrumentation Ozone Calibrator (only used for tests conducted before 4/21/2017)	703E	O200	04-21-2017
Teledyne – Advanced Pollution Instrumentation Ozone Calibrator (used for tests on/after 4/21/2017)	703E	O204	04-02-2018
Teledyne – Advanced Pollution Instrumentation Ozone Monitor	400E	O201	*
Vaisala – Temperature & Humidity Transducer	HMD-70Y	T1307	06-22-17
APT – Linear AC Power Source	LS1000	4120092	**
Yokogawa – Digital Power Meter	WT210	D703	12-17-2017

* The 400E Ozone Monitor is calibrated using the 703E calibrator. ** The LS1000 Linear AC Power Source is verified using the Yokogawa Digital Power Meter

5. Summary/Signatures

The test sample(s) documented in this report were tested in accordance to the standard(s) referenced in the first page of this report.

The representative sample(s) have been tested, investigated, and found to comply with the requirements of the UL Standard 867 Section 40, criteria of emitting a maximum ozone concentration of less than 0.050 ppm. Furthermore a second sample was not required to be tested as the first sample's maximum emissions were less than 0.030 ppm to satisfy the exception in the Section 40.1.1.

This report completes our evaluation covered by Intertek Project No. G103013014. If there are any questions regarding the results contained in this report, or any of the other services offered by Intertek, please do not hesitate to contact the undersigned.

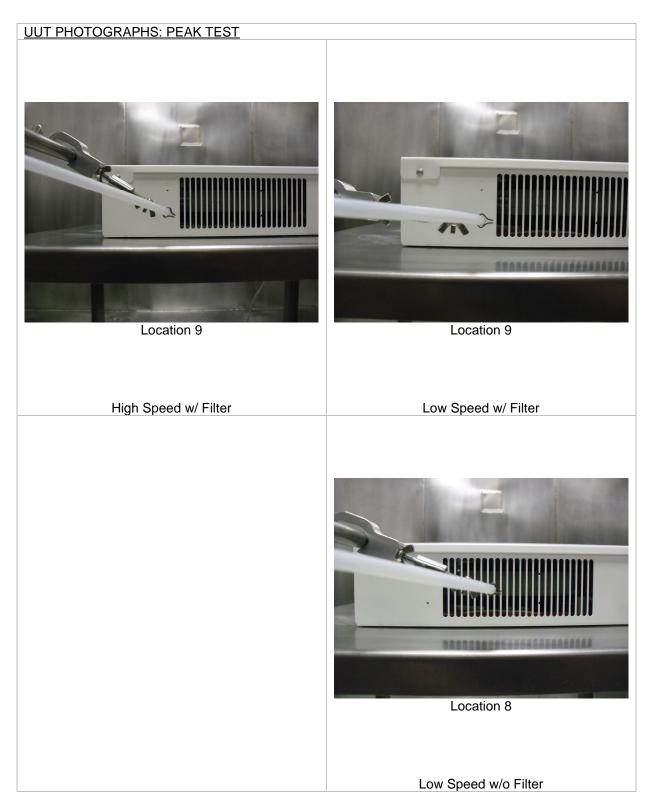
Please note; this Report does not represent authorization for the use of any Intertek certification marks.

	OZONE EMIS	SIONS SUMMARY	
Fan Speed	Filter(s)	O3/Voltage Setting	C(t) _{max} [ppm]
High	YES	-	0.011
Low	YES	-	0.013
Low	NO	-	0.012

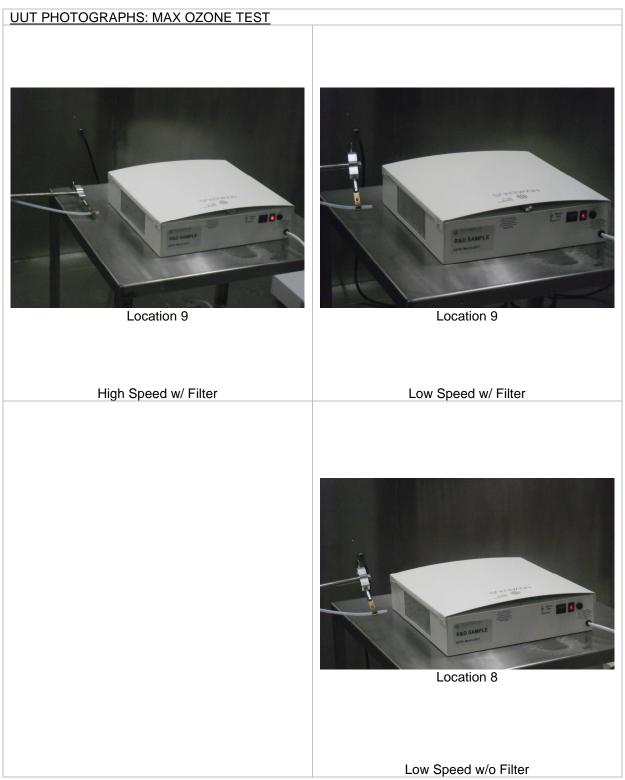
Completed by: Title:	Jacob Langenbache Engineer	r Reviewed by: Title:	Michael Hudon Project Engineer
Signature:	Jacob Langenbucher	Signature	Michael Huden
Date	4/25/2017	Date:	4/27/2017
	Completed by: Title: Signature:	Joseph Hartley Technician III	
	Date	4/25/2017	

6. Appendix

DATA FILES


Test Name	Raw Data File
Model Half Life	2286_halflife_ozonelog.csv
Max Ozone: High Speed w/ Filter	2287_MAX_NV800_HIWF.csv
Max Ozone: Low Speed w/ Filter	2289_MAX_TEST_NV800_LOWF.csv
Max Ozone: Low Speed w/o Filter	2290_NV800_Max_Test_Lowof.csv

ATTACHMENT DOCUMENTS


Document	Soft-copy File Name	
ARB Application	NA	
Chain of Custody: Sample 1	COC_CRT1704121652-001.pdf	

7.0 Revision Summary				
Date/	Project Handler/	Section Description of Change		
Proj # Site ID	Reviewer		Description of onlarige	
4/27/2017	QCL		Corrected Run-in Start from "6/1/2016	
G103013014CRT	J Langenbacher	1	09:25" to "4/13/2017 04:30". Corrected Run-in End from "6/3/2016 09:25" to "4/18/2017 08:30".	